IntroductionVertical bone augmentation without osseous walls to support the stability of clots and bone grafts remains a challenge in dental implantology. The objectives of this study were to confirm that cortical perforation of the recipient bed is necessary and to evaluate whether nanohydroxyapatite (nHA) block grafts coated with recombinant human vascular endothelial growth factor165 (rhVEGF165) and cortical perforation can improve vertical bone regeneration.Materials and MethodsWe prepared nHA blocks coated with or without rhVEGF165 on the rabbit calvarium through cortical perforation, and designated the animals as the nonperforated group (N-nHA), rhVEGF165 group (NV-nHA), perforated group (P-nHA) and rhVEGF165 on perforated group (PV-nHA). Micro-computed tomography (micro-CT) and fluorescence microscopy were selected to evaluate parameters of vertical bone regeneration at 4 and 6 weeks.ResultsThe ratio of the newly formed bone volume to the titanium dome volume (BV/TV) and the bone mineral density (BMD) were significantly higher in the PV-nHA group than in the N-nHA group at 4 and 6 weeks, as determined using micro-CT. The fluorescence analysis showed slightly greater increases in new bone regeneration (NB%) and vertical height (VH%) gains in the P-nHA group than in the N-nHA group. Greater increases in NB% and VH% were observed in groups treated with rhVEGF165 and perforation than in the blank groups, with significant differences detected at 4 and 6 weeks (N-nHA compared with PV-nHA, p<0.05). A greater VH% that was observed at the midline of the block in the PV-nHA group than in the other three groups at both time points (0.75±0.53% at 4 weeks and 0.83±0.42% at 6 weeks).ConclusionAccording to the present study, cortical perforation is necessary and nHA blocks coated with rhVEGF165 and decoration could work synergistically to improve vertical bone regeneration by directly affecting primary osteoblasts and promoting angiogenesis and osteoinduction.