<p>This study explored and examined soliton solutions for the Quintic Benney-Lin equation (QBLE), which describes the dynamic of liquid films, using the Riccati modified extended simple equation method (RMESEM). The proposed approach, which is designed for nonlinear partial differential equations (NPDEs), effectively generates a large number of soliton solutions for the given QBLE, which basically captures the fundamental dynamics of the system. The rational, hyperbolic, rational-hyperbolic, trigonometric, and exponential forms of the scientifically specified soliton solutions are the main determinants of the hump solitons. We used 2D, 3D, and contour visualizations to offer accurate representations of the researched soliton phenomena associated with these solutions. These representations revealed the existence of dark and bright hump solitons in the framework of the QBLE and offer a thorough way to examine the model's behavioral characteristics in the liquid film by analyzing the QBLE model's soliton dynamics. Moreover, applying the suggested approach advances our knowledge of the unique features of the other similar NPDEs and the underlying dynamics.</p>