This study investigates the factors affecting estimation accuracy of queue length at signalized intersections under low penetration of connected vehicles. A shockwave-based algorithm is proposed to estimate the maximum queue length and residual queue on a cycle-by-cycle basis. Simulation data collected from three consecutive signalized intersections were used to extract trajectories of connected vehicles under five different market penetration rates and two different traffic conditions (under-saturated and moderate). The results confirm that the queue length estimation process is probabilistic and affected by the stochastic changes in traffic conditions. This probabilistic nature is defined by a queue formation coverage index (QI) that proved to significantly affect the queue length estimation accuracy. Overall, the results show that the accuracy of the queue estimates is acceptable when a QI value of at least 50% is achieved. In such limited data environments, the QI showed potential to help as an assessment tool to evaluate the obtained queue estimates.
Read full abstract