Simple SummaryIn pig livestock, alternatives to in-feed antibiotics are needed to promote health status and to control enteric infections. Plant extracts containing biologically-active molecules may influence animal metabolism and performance, therefore potentially reducing the use of antibiotics in pigs. Tannins have antioxidant, anti-inflammatory and antimicrobial properties, and have been adopted to enhance growth performance, modulate intestinal microbiota, and decrease the incidence of diarrhea, particularly during the post-weaning period. Despite their functional properties, tannins are known to be astringent compounds due to their ability to complex and precipitate proteins, particularly proline-rich proteins. The common use of non-standardized plant extracts generates results that are often controversial and difficult to interpret. In this study, attention was focused on the evaluation of the inclusion of a mixture of tannins extracted from chestnut and quebracho in the diet of piglets.In pig livestock, alternatives to in-feed antibiotics are needed to control enteric infections. Plant extracts such as tannins can represent an alternative as a natural source of functional compounds. The aim of this study was to evaluate the in vitro digestibility and in vivo effects of oral supplementation of combined chestnut (Ch) and quebracho (Qu) tannins in order to establish if they can induce a positive effect on weaned piglets’ performance, metabolic status and fecal parameters. In vitro digestibility (dry matter, DM) of diets was calculated using a multi-step enzymatic technique. In vitro digested diet samples were further tested on an intestinal porcine enterocyte cell line (IPEC-J2). Weaned piglets (n = 120; 28 ± 2 day old) were randomly allotted to two groups (12 pens in total with 10 pigs per pen): control (Ctrl) and treatment (Ch/Qu). After one week of adaptation (day 0), 35-day-old piglets in the Ctrl group were fed a Ctrl diet and the Ch/Qu group were fed with 1.25% Ch/Qu for 40 days. Body weight and feed intake per pen were recorded weekly. At day 40, blood and fecal samples were collected. Principal metabolic parameters were evaluated from blood samples by enzymatic colorimetric analysis. Total phenolic compounds, urea, and ammonia in feces were analyzed (Megazyme International, Bray, Ireland). In vitro digestibility and cell viability assays showed that the inclusion of 1.25% Ch/Qu slightly reduced diet digestibility compared with the Ctrl diet, while intestinal cell viability was not altered with low concentrations of Ch/Qu digesta compared with Ctrl. In vivo results did not show any adverse effects of Ch/Qu on feed intake and growth performance, confirming that dietary inclusion of Ch/Qu at a concentration of 1.25% did not impair animal performance. The decreased diet DM digestibility in the Ch/Qu diet may cause increased serum concentration of albumin (Ctrl: 19.30 ± 0.88; Ch/Qu: 23.05 ± 0.88) and albumin/globulin ratio (Ctrl: 0.58 ± 0.04; Ch/Qu: 0.82 ± 0.04), but decreased creatinine (Ctrl: 78.92 ± 4.18; Ch/Qu: 54.82 ± 4.18) and urea (Ctrl: 2.18 ± 0.19; Ch/Qu: 0.95 ± 0.19) compared with Ctrl. Pigs in the Ch/Qu group contained higher (p < 0.05) concentrations of fecal phenolic compounds and nitrogen than the Ctrl group, while fecal ammonia and urea were not affected by tannins. In conclusion, Ch/Qu tannin supplementation did not influence growth performance. Although lower digestibility was observed in the diet supplemented with Ch/Qu tannins, Ch/Qu supplementation did not show any adverse effect on intestinal epithelial cell viability.
Read full abstract