The strategic optimization of a container terminal’s quayside assets, including the berth and quay cranes, is crucial for maximizing their deployment and utilization. The interrelated and complex challenges of Berth Allocation (BAP) and Quay Crane Scheduling (QCSP) are fundamental to enhancing the resilience of container ports, as berths and quay cranes constitute essential infrastructure. Efficient berth allocation and quay crane scheduling can mitigate operational disruptions, even in the face of maintenance or failures, thereby improving both operational reliability and resilience. However, previous studies have often overlooked the uncertainty associated with quay crane maintenance when planning these operations. This paper aims to minimize vessel turnaround time by accounting for the uncertain in quay crane maintenance activities. To address this novel problem, we propose a proactive-reactive method that incorporates a reliability-based model into the Swarm Optimization with Differential Evolution (SWO-DE) algorithm. Computational results confirm the practical relevance and effectiveness of our proposed solution methods for container terminals.
Read full abstract