Quasiperiodicity and chaos in a ring of unidirectionally coupled sigmoidal neurons (a ring neural oscillator) caused by a single shortcut is examined. A codimension-two Hopf–Hopf bifurcation for two periodic solutions exists in a ring of six neurons without self-couplings and in a ring of four neurons with self-couplings in the presence of a shortcut at specific locations. The locus of the Neimark–Sacker bifurcation of the periodic solution emanates from the Hopf–Hopf bifurcation point and a stable quasiperiodic solution is generated. Arnold’s tongues emanate from the locus of the Neimark–Sacker bifurcation, and multiple chaotic oscillations are generated through period-doubling cascades of periodic solutions in the Arnold’s tongues. Further, such chaotic irregular oscillations due to a single shortcut are also observed in propagating oscillations in a ring of Bonhoeffer–van der Pol (BVP) neurons coupled unidirectionally by slow synapses.
Read full abstract