The wind profiler radar (WPR) system requires a dual-polarized antenna with multiple low-sidelobe and high-gain beams to facilitate the detection of weak signals reflected by atmospheric turbulence. This paper proposes a dual-polarized continuous transverse stub (CTS) K-band antenna with four reconfigurable beams, which comprises a series-fed CTS array and four 1-to-14 power dividers as line source generators (LSGs) to generate a high-quality quasi-TEM wave. The CTS element incorporates a stepped transition radiation stub design and employs a short cutoff stub on the upper surface of the series-fed parallel plate waveguide (PPW) to achieve optimal impedance matching. The entire antenna is an all-metal structure with remarkably low loss, and low-cost standard fabrication processes are employed for the prototype, which achieves fast reconfigurable four-beam scanning to 15°, with a gain of 31.09 dBi and sidelobe levels below −17.6 dB. Measurement results in an anechoic chamber agree well with simulations, demonstrating the antenna’s ease of manufacture, stability, and suitability for wind profile radar applications.