Abstract
It is well known that long Josephson tunnel junctions (JTJs) act as active transmission lines for the slow-mode propagation of magnetic flux-quanta (in the form of solitary waves) that is at the base of many superconducting circuits. At the same time, they support the propagation of quasi-TEM dispersive waves with which the magnetic flux non-linearly interact. In this work, we study the properties of the electromagnetic resonances, under different conditions of practical interest, in annular JTJs (AJTJs), in which the wavelengths are limited to the length of the circumference divided by an integer. Our analysis is based on perturbed sine–Gordon equations the (1+1)-dimensional space with periodic boundary conditions. We discuss the discrete modes of the traveling EM waves in circular AJTJs in the presence of an in-plane magnetic field, as well as in the recently introduced confocal AJTJs (in the absence of magnetic field). In both cases, a variable-separation method leads to quantitatively different Mathieu equations characterized by even and odd spatially periodic solutions with different eigenfrequencies. It implicates that a single mode circulating wave is given by the superposition of two standing waves with the same wavelengths but different frequencies, and so has a periodically inverting direction of propagation. The control parameters of this frequency splitting are the in-plane magnetic field amplitude for the circular AJTJ and the aspect ratio for the confocal AJTJs. In the appropriate limits, the previously known solutions are recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.