Triply periodic minimal surface (TPMS) lattice structures have gained considerable attention because of their light weight, high strength, and excellent energy absorption capabilities. However, the effect of the amplitude that can control the topological morphology of a TPMS on the dynamic properties of the TPMS structure is not yet fully understood, as previous studies have focused on the relative density and size as well as their quasi-static mechanical properties. In this study, three types of uniform sheet-based TPMS structures with different amplitudes and three types of functionally graded sheet-based TPMS structures were proposed. Experiments and numerical simulations were conducted under quasi-static and dynamic loading conditions. Six types of TPMS lattice structures made of 316L stainless steel were manufactured via powder bed fusion. Quasi-static compression tests were performed at a strain rate of 0.001 s⁻¹. The experimental results indicate that increasing the amplitude can increase the elastic modulus, plateau stress, and energy absorption capacity of a structure. Moreover, the functional gradient amplitude structure has a higher energy absorption capacity, and the structures with line and log gradient strategies improved by 17.38% and 35.43%, respectively, compared to the uniform structure with an amplitude of 1. Additionally, an idealized rigid-linear plastic hardening (R-LPH) model was proposed to predict the mechanical response of the structures. The finite element method (FEM) was used to construct dynamic compression numerical models, and their validity was verified through split Hopkinson pressure bar (SHPB) tests at a strain rate of 695 s⁻¹. The mechanical response, deformation modes, and stress enhancement effects of the structures under dynamic compression were systematically studied. The results show that the mechanical performance and energy absorption capacity of the structures under dynamic impact loading increase with increasing strain rate. The critical velocity for the transition from the quasi-static mode to the impact mode increases with amplitude. For strain rates below 6000 s⁻¹, the strain rate effect is the main factor influencing the dynamic stress enhancement. As the strain rate continues to increase, the dynamic stress enhancement results from the combined effects of inertia and strain rate, with inertia effects gradually becoming the dominant factor. This study shows that functional gradient TPMS meta-structures have excellent mechanical and energy absorbing properties under quasi-static compression and dynamic compression, with potential applications in passive safety protection.
Read full abstract