In this paper, a new quasi-Newton equation is applied to the structured secant methods for nonlinear least squares problems. We show that the new equation is better than the original quasi-Newton equation as it provides a more accurate approximation to the second order information. Furthermore, combining the new quasi-Newton equation with a “product structure”, a new algorithm is established. It is shown that the resulting algorithm is quadratically convergent for the zero-residual case and superlinearly convergent for the nonzero-residual case. In order to compare the new algorithm with some related methods, our preliminary numerical experiments are also reported.
Read full abstract