A quantum-controlled device may produce a scenario in which two general quantum operations can be performed in such a way that it is not possible to associate a definite order for the operation's application. Such an indefinite causal order can be explored to produce nontrivial effects in quantum thermal devices. We investigate a measurement-powered thermal device that consists of generalized measurement channels with adjustable intensity parameters, where energy is exchanged with the apparatus in the form of work or heat. The measurement-based device can operate as a heat engine, a thermal accelerator, or a refrigerator, according to a measurement intensity setting. By employing a quantum switch of two measurement channels, we explore a thermal device fueled by an indefinite causal order. We also discuss how a coherent control over an indefinite causal order structure can change the operating regimes of the measurement-powered thermal device to produce an advantage when compared to a scenario with an incoherent control of the order switch.
Read full abstract