Abstract

In the standard quantum theory, the causal order of occurrence between events is prescribed, and must be definite. This has been maintained in all conventional scenarios of operation for quantum batteries. In this study we take a step further to allow the charging of quantum batteries in an indefinite causal order (ICO). We propose a nonunitary dynamics-based charging protocol and experimentally investigate this using a photonic quantum switch. Our results demonstrate that both the amount of energy charged and the thermal efficiency can be boosted simultaneously. Moreover, we reveal a counterintuitive effect that a relatively less powerful charger guarantees a charged battery with more energy at a higher efficiency. Through investigation of different charger configurations, we find that ICO protocol can outperform the conventional protocols and gives rise to the anomalous inverse interaction effect. Our findings highlight a fundamental difference between the novelties arising from ICO and other coherently controlled processes, providing new insights into ICO and its potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.