A theoretical analysis for resonant cavity enhanced p-type quantum dot (QD) infrared photo-detector that uses intervalence subband transitions in In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> As/GaAs QDs is presented. Multiband effective mass k.p model with the strain effect is used to calculate valance subband energy levels. Photocurrent spectra, response wavelength, and dark current density of QD infrared detector have been calculated. The calculations have been performed for a wide range of dot sizes, compositions, dot height, bias voltages, and temperatures. The effect of QD height, radius, and composition on the response of the photodetectors has been analyzed and some criteria for performance improvement have been suggested.