Abstract

Using a perturbative method we have investigated the behavior of the binding energy and photoionization cross-section of a donor impurity in spherical GaAs–GaAlAs quantum dots under the influence of electric and intense high-frequency laser fields. The dependencies of the binding energy and photoionization cross-section on electric and laser field strength, dot radius and impurity position were investigated. Our results show that the amplitude of photoionization cross-section grows with the dot radius increase and the peak of the cross-section blue shifts with the laser intensity increment. We have found that the binding energy is not a monotonically function of laser intensity: it decreases or increases depending on electric field regime. The studied effects are even more pronounced as the quantum dot radius is smaller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.