We analyze the Lie algebraic structures related to the quantum deformation of the Sato Grassmannian, reducing the problem to studying co-adjoint orbits of the affine Lie subalgebra of the specially constructed loop diffeomorphism group of tori. The constructed countable hierarchy of linear matrix problems made it possible, in part, to describe some kinds of Frobenius manifolds within the Dubrovin-type reformulation of the well-known WDVV associativity equations, previously derived in topological field theory. In particular, we state that these equations are equivalent to some bi-Hamiltonian flows on a smooth functional submanifold with respect to two compatible Poisson structures, generating a countable hierarchy of commuting to each other’s hydrodynamic flows. We also studied the inverse problem aspects of the quantum Grassmannian deformation Lie algebraic structures, related with the well-known countable hierarchy of the higher nonlinear Schrödinger-type completely integrable evolution flows.