Advanced video codecs such as High Efficiency Video Coding/H.265 (HEVC) and Versatile Video Coding/H.266 (VVC) are vital for streaming high-quality online video content, as they compress and transmit data efficiently. However, these codecs can occasionally degrade video quality by adding undesirable artifacts such as blockiness, blurriness, and ringing, which can detract from the viewer’s experience. To ensure a seamless and engaging video experience, it is essential to remove these artifacts, which improves viewer comfort and engagement. In this paper, we propose a deep feature fusion based convolutional neural network (CNN) architecture (VVC-PPFF) for post-processing approach to further enhance the performance of VVC. The proposed network, VVC-PPFF, harnesses the power of CNNs to enhance decoded frames, significantly improving the coding efficiency of the state-of-the-art VVC video coding standard. By combining deep features from early and later convolution layers, the network learns to extract both low-level and high-level features, resulting in more generalized outputs that adapt to different quantization parameter (QP) values. The proposed VVC-PPFF network achieves outstanding performance, with Bjøntegaard Delta Rate (BD-Rate) improvements of 5.81% and 6.98% for luma components in random access (RA) and low-delay (LD) configurations, respectively, while also boosting peak signal-to-noise ratio (PSNR).
Read full abstract