Abstract
Advanced video codecs such as High Efficiency Video Coding/H.265 (HEVC) and Versatile Video Coding/H.266 (VVC) are vital for streaming high-quality online video content, as they compress and transmit data efficiently. However, these codecs can occasionally degrade video quality by adding undesirable artifacts such as blockiness, blurriness, and ringing, which can detract from the viewer’s experience. To ensure a seamless and engaging video experience, it is essential to remove these artifacts, which improves viewer comfort and engagement. In this paper, we propose a deep feature fusion based convolutional neural network (CNN) architecture (VVC-PPFF) for post-processing approach to further enhance the performance of VVC. The proposed network, VVC-PPFF, harnesses the power of CNNs to enhance decoded frames, significantly improving the coding efficiency of the state-of-the-art VVC video coding standard. By combining deep features from early and later convolution layers, the network learns to extract both low-level and high-level features, resulting in more generalized outputs that adapt to different quantization parameter (QP) values. The proposed VVC-PPFF network achieves outstanding performance, with Bjøntegaard Delta Rate (BD-Rate) improvements of 5.81% and 6.98% for luma components in random access (RA) and low-delay (LD) configurations, respectively, while also boosting peak signal-to-noise ratio (PSNR).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.