The ion velocity distribution function (IVDF) above and within a radio-frequency (RF) biased plasma sheath is studied experimentally with a pulsed laser-induced fluorescence diagnostic in an industrial plasma etch tool. Temporally resolved measurements taken at eight different phases of the 2.2 MHz bias waveform show that the ion dynamics vary dramatically throughout the RF cycle (the ratio of the average ion transit time through the sheath to the RF period is τion/τRF = 0.3). The position of the presheath/sheath edge is constant throughout the RF cycle and the time-averaged ion flux is conserved within the sheath region. The characteristic bimodal structure of the time-averaged ion distributions found in previous experiments is observed to arise from the time-dependent ion dynamics, in accord with existing theory. The large temporal variation of the IVDF has implications for the plasma chemistry and etching quality.