Phase error of the demodulation clock in the Coriolis vibratory gyroscope system allows the quadrature errors to leak into the sense channel and causes significant bias and temperature drift at the rate output. A phase self-correction method to suppress the temperature drift of the bias in gyroscopes is proposed. Through sweeping the demodulation clock phase and simultaneously monitoring the mechanical quadrature error output in gyroscopes, the optimal demodulation clock phase with minimum relatively phase shift is determined. Thus the bias influenced by the temperature and surroundings can be calibrated on-chip at start-up or when the environment changes drastically without the requirement of the complicated instruments. The proposed approach is validated by a silicon MEMS gyroscope with the natural frequency of 2.8[Formula: see text]kHz, which shows nearly 22 times improvement in the temperature sensitivity of the system bias, from 550[Formula: see text]mdeg/s/∘C down to 24.7[Formula: see text]mdeg/s/∘C.
Read full abstract