In this paper, the performances of three quadratically convergent algorithms coupled with four one-dimensional search schemes are studied through several nonquadratic examples. The algorithms are the rank-one algorithm (Algorithm I), the projection algorithm (Algorithm II), and the Fletcher-Reeves algorithm (Algorithm III). The search schemes are the exact quadratic search (EQS), the exact cubic search (ECS), the approximate quadratic search (AQS), and the approximate cubic search (ACS). The performances are analyzed in terms of number of iterations and number of equivalent function evaluations for convergence. From the numerical experiments, the following conclusions are found: (a) while the number of iterations generally increases by relaxing the search stopping condition, the number of equivalent function evaluations decreases; therefore, approximate searches should be preferred to exact searches; (b) the numbers of iterations for ACS, ECS, and EQS are about the same; therefore, the use of more sophisticated, higher order search schemes is not called for; the present ACS scheme, modified so that only the function, instead of the gradient, is used in bracketing the minimal point, could prove to be most desirable in terms of the number of equivalent function evaluations; (c) for Algorithm I, ACS and AQS yield almost identical results; it is believed that further improvements in efficiency are possible if one uses a fixed stepsize approach, thus bypassing the one-dimensional search completely; (d) the combination of Algorithm II and ACS exhibits high efficiency in treating functions whose order is higher than two and whose Hessian at the minimal point is singular; and (f) Algorithm III, even with the best search scheme, is inefficient in treating functions with flat bottoms; it is doubtful that the simplicity of its update will compensate for its inefficiency in such pathological cases.
Read full abstract