Abstract
LetB be a positive definite symmetric approximation to the second derivative matrix of the objective function of a minimization calculation. We study modifications of the BFGS method that apply a scaling technique to the columns of a conjugate direction matrixZ satisfyingZ T BZ = I. For a simple scaling technique similar to the ones considered by Powell (1987) and (1989) we show that, due to a two iteration cycle, linear convergence can occur when the method is applied to a quadratic function and Wolfe's line search is employed, although for exact line searches quadratic termination can be proved. We then suggest a different scaling technique that prevents certain columns thought to contain important curvature information from being scaled. For this algorithm we prove global and superlinear convergence and demonstrate the superiority of our method over the BFGS formula on a range of illconditioned optimization problems. Moreover, we present an implementation of our algorithm that requires only 3n 2 +O(n) multiplications per iteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.