Increased lipofuscin accumulation is assumed to be an important factor in the pathogenesis of age-related macular degeneration (AMD), although direct evidence for this hypothesis is missing. To quantitatively investigate lipofuscin-associated fundus autofluorescence (AF) in patients with early and intermediate AMD. A prospective, single-center, case-control study was conducted from August 1, 2014, to October 31, 2015, at a university referral center. Participants included 40 patients aged 65 years or younger and 108 individuals without eye disease serving as controls. All participants underwent quantitative fundus AF (qAF) imaging with a modified scanning laser ophthalmoscope equipped with an internal fluorescent reference. Mean qAF values of an 8-segment circular ring centered on the fovea (qAF8) were measured and compared between patients and controls. For subgroup analysis, drusen were categorized as soft drusen, cuticular drusen, and/or reticular pseudodrusen (RPD). The qAF8 levels. In the 40 patients with AMD, mean (SD) age was 54.8 (5.6) years, and 32 (80%) were women. None of the investigated patients had qAF8 values above the 95% prediction interval (PI) of the 108 controls. In the soft drusen (28 [70%]) and cuticular drusen (8 [20%]) groups, qAF8 levels within the 95% PI were noted in 22 patients (79%; 95% CI, 60% to 90%) and 7 patients (88%; 95% CI, 51% to 99%) respectively. The qAF8 values in the RPD group (4 [10%]) were below the 95% PI in 3 patients (75%; 95% CI, 29% to 97%). Compared with the controls, statistical analysis revealed lower qAF8 values in the overall AMD cohort after adjusting for age (difference, -19.9% [95% CI, -25.6% to -12.7%], P < .001) as well as in all subgroups (soft drusen, -17.1% [95% CI, -24.1% to -9.5%], P < .001; cuticular drusen, -19.6% [95% CI, -30.3% to -7.2%], P = .003; and RPD, -34.5% [95% CI, -47.1% to -21.3%]; P < .001). The qAF8 measurements in this sample showed no increased lipofuscin-related fundus AF in patients with early and intermediate AMD. Lower qAF levels in certain subgroups may point to subnormal lipofuscin levels in the retinal pigment epithelium or, alternatively, limitations to detection of true retinal pigment epithelial lipofuscin content. The results of this study might expand the understanding of the pathogenesis of AMD and may have an effect on upcoming treatment trials that aim to modify lipofuscin accumulation.