Abstract

PurposeWe sought to advance interpretations and quantification of short-wavelength fundus autofluorescence (SW-AF) emitted from bisretinoid lipofuscin and near-infrared autofluoresence (NIR-AF) originating from melanin.MethodsCarriers of mutations in X-linked GPR143/OA1, a common form of ocular albinism; patients with confirmed mutations in ABCA4 conferring increased SW-AF; and subjects with healthy eyes were studied. SW-AF (488 nm excitation, 500–680 nm emission) and NIR-AF (excitation 787 nm, emission >830 nm) images were acquired with a confocal scanning laser ophthalmoscope. SW-AF images were analyzed for quantitative autofluoresence (qAF). Analogous methods of image acquisition and analysis were performed in albino and pigmented Abca4−/− mice and wild-type mice.ResultsQuantitation of SW-AF (qAF), construction of qAF color-coded maps, and examination of NIR-AF images from GPR143/OA1 carriers revealed mosaics in which patches of fundus exhibiting NIR-AF signal had qAF levels within normal limits whereas the hypopigmented areas in the NIR-AF image corresponded to foci of elevated qAF. qAF also was increased in albino versus pigmented mice. Although melanin contributes to fundus infrared reflectance, the latter appeared to be uniform in en face reflectance images of GPR143/OA1-carriers. In patients diagnosed with ABCA4-associated disease, NIR-AF increased in tandem with increased qAF originating in bisretinoid lipofuscin. Similarly in Abca4−/− mice having increased SW-AF, NIR-AF was more pronounced than in wild-type mice.ConclusionsThese studies corroborate RPE melanin as the major source of NIR-AF but also indicate that bisretinoid lipofuscin, when present at sufficient concentrations, contributes to the NIR-AF signal. Ocular melanin attenuates the SW-AF signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call