An efficient scheme for the design of aperture fields (distributed sources) that radiate arbitrary trajectory curved (accelerating) beams, with enhanced controllability of various beam features, is presented. The scheme utilizes a frame-based phase-space representation of aperture fields to overcome the main hurdles in the design for large apertures: First, it uses the a-priory localization of caustic beams to significantly reduce the optimization problem's variable space, to that of few Gaussian window coefficients accurately capturing those beams. Then, the optimization problem is solved in the reduced (local) spectral domain. We adopt a linearization approach that enables the solution by sequential application of conventional convex optimization tools, which are naturally compatible with the proposed phase-space representation. The localized nature of the Gaussian windows' radiation is used also for fast field evaluation at a greatly reduced number of optimization constraint points. The significant enhancement in the controllability over the various beam parameters is demonstrated through a range of examples.