Highly oriented PbZr0.53Ti0.47O3/CoFe2O4(PZT/CFO) multilayered nanostructures (MLNs) were grown on MgO substrate by pulsed laser ablation using La0.5Sr0.5CoO3 (LSCO) as conducting bottom electrode. The effect of various PZT/CFO (PC) sandwich configurations having three, five, and nine layers while maintaining total thickness of PZT and CFO be identical has been systematically investigated. X-ray diffraction (XRD) and micro-Raman spectra revealed the existence of pure PZT and CFO phases without any intermediate phase. Intact MLNs were observed by transmission electron microscopy (TEM) with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase. Impedance spectroscopy, modulus spectroscopy, and conductivity spectroscopy were carry out over a wide range of temperatures (100–600 K) and frequencies (100 Hz–1 MHz) to investigate the grain and grain boundary effect on electrical properties of MLNs. Temperature dependent real dielectric permittivity and dielectric loss illustrated step-like behavior and relaxation peaks near the step-up characteristic, respectively. Cole–Cole plots indicate that most of the dielectric response came from the bulk (grain) MLNs below 300 K, whereas the grain boundary and the electrode–MLNs effects are prominent at elevated temperatures. The dielectric loss relaxation peak shifted to higher frequency side with increase in temperature, it was out of the experimental frequency window above 300 K. Our Cole–Cole fitting of dielectric loss spectra indicated marked deviation from the ideal Debye-type of relaxation, which is more at elevated temperature. Master modulus spectra supported the observation from the impedance spectra; it also indicated that the magnitude of the grain boundary compared to grain becomes more prominent with increase in number of layers. We have explained these electrical properties of MLNs by Maxwell–Wagner type contributions arising from the interfacial charge at the interface of the ML structures. Three different types of frequency dependent conduction processes were observed at elevated temperatures (>300 K), which fitted well with the double power law, \( \sigma \left( \omega \right) = \sigma \left( 0 \right) + A_{1} \omega^{{n_{1} }} + A_{2} \omega^{{n_{2} }} , \) indicating that the low frequency (<1 kHz) conductivity may be due to long-range ordering (frequency independent), mid frequency conductivity (<10 kHz) may be due to short-range hopping, and high frequency (<1 MHz) conduction due to the localized relaxation hopping mechanism. Ferroelectric polarization decreased slowly in reducing the temperature from 300 to 200 K, with complete collapse of polarization at ~100 K, but there was complete recovery of the polarization during heating, which was repeatable over many different experiments. At the same time, the temperature dependent remanent magnetization of the MLNs showed slow enhancement in the magnitude till 200 K with three-fold increase at 100 K compared to room temperature. This enhancement in remanent magnetization and decrease in remanent ferroelectric polarization on lowering the temperature indicate temperature dependent dynamic switching of ferroelectric polarization. The magnetic and ferroelectric properties of MLNs were quite different compared to individual layers suggesting its improper ferroelectric characteristics. The fatigue test showed almost 0–20% deterioration in polarization. Fatigue and strong temperature and frequency dependent magneto-electric coupling suggest MLNs utility for Dynamic Magneto-Electric Random Access Memory (DMERAM).
Read full abstract