The proper disposal of antibiotic mycelial residue (AMR) is a critical concern due to the spread of antibiotics and environmental pollution. Pyrolysis emerges as a promising technology for AMR treatment. In this study, we investigated the effect of pyrolysis temperature on the thermal decomposition behavior and product characteristics of avermectin (AV) mycelial residues. Various characterization techniques were employed to analyze thoroughly the compositions and yields of the obtained gas, liquid, and biochar products. The results indicated that most of the organic matter such as protein, carbohydrate, and aliphatic compounds in AV mycelial residues decomposed intensely at 322 °C and tended to end at 700 °C, with a total weight loss of up to 72.6 wt%. As the pyrolysis temperature increased, the biochar yield decreased from 32.81 wt% to 26.39 wt% because of the enhanced degradation of volatiles and secondary reactions of the formed aromatic rings. Accordingly, more gas components were formed with the gas yield increased from 9.76 wt% to 15.42 wt%. For bio-oil, the contents were maintained in the range of 57.43–60.13 wt%. CO and CO2 dominated the gas components with a high total content of almost 62.37–97.54 vol%. At the same time, abundant acids, esters (42.99–48.85%), and nitrogen-containing compounds (32.14–38.70%) such as nitriles, amides, and nitrogenous heterocyclic compounds were detected for the obtained bio-oil. As for the obtained biochars, particle accumulation and irregular pores were presented on their bulk surface, which was primarily composed of calcium oxalate (CaC2O4) and calcium carbonate (CaCO3). This work can provide theoretical insights for the harmless disposal and resource recovery for AMR, contributing significantly to the field of solid waste reuse and management.