Abstract Interactions between poly(N-substituted acrylamide)s and surfactants, such as sodium dodecyl sulfate (SDoS) and sodium decyl sulfate (SDeS), in aqueous solutions were investigated using a solvatochromic probe. The polymers used were poly(N,N-dimethylacrylamide) (PDMA), poly(N-isopropylacrylamide) (PIPA), poly(N-acryloylpyrrolidine) (PAPR), and poly(vinylpyrrolidone) (PVPy) for comparison. They were labeled with pyridinium dicyanomethylide chromophore as a solvatochromic probe, and the changes in the microenvironment polarity of the polymer upon association with surfactant micelles were investigated by monitoring the λmax in the absorption spectra of the probe molecule. It was found that the Gibbs free energy of micelle stabilization by polymer complexation for SDoS is 7.6, 4.1, and 2.2 kJ mol−1, and for SDeS 5.1, 2.9, and 0.8 kJ mol−1 with PIPA, PAPR, and PDMA, respectively. These results indicate that the complexation between polymer and surfactant is influenced not only by the alkyl-chain length of the surfactant, but also by the polymer side groups.
Read full abstract