Polymer nanocomposites (PNCs) are state-of-the-art composites consisting of nanofiller-materials included in polymer matrices and bearing the integrated, promising properties of both the polymer and the nanofiller. They are now renowned as advanced materials for the development of polymer nanotechnology-based flexible and stretchable-type multifunctional organoelectronic devices as well as improved daily use products. Characterization of their dielectric properties permits some of these PNCs to be used as polymer nanodielectrics (PNDs), resulting in confirming the suitability and performance improvement of the electronic devices. This work deals with the dielectric behavior of wide band gap semiconducting zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles dispersed biodegradable poly(vinyl pyrrolidone) (PVP) matrix-based PNC films. The results confirmed the tunable and considerably increased dielectric permittivity with increasing nanofillers content in the range 1–5 wt% for these PNC films. The influence of the ZnO and TiO2 nanoparticles sizes and their dielectric permittivities, and also of the polymer–nanoparticle interactions and interfaces, on the dielectric polarization and charge conduction mechanisms of the PNC films with increasing frequency from 2 × 101 to 106 Hz were identified, and the suitability of these materials as biodegradable PNDs is discussed. Further, the appreciable homogeneous distribution of these crystalline nanoinclusions in the amorphous PVP matrix and the successful formation of hybrid nanocomposites were ascertained from our XRD results.
Read full abstract