Solar photovoltaic (PV) systems are growing rapidly as a renewable energy source. Evaluating the performance of a PV system based on local weather conditions is crucial for its adoption and deployment. However, the current IEC 61724 standard, used for assessing PV system performance, is limited to grid-connected systems. This standard may not accurately reflect the performance of off-grid PV systems. This study aims to evaluate how ambient weather conditions and energy usage patterns affect the performance of an off-grid PV system. This study uses a 3.8 kWp building-integrated photovoltaic (BIPV) system located at SolarWatt Park, University of Fort Hare, Alice, as a case study. Meteorological and electrical data from August and November are analyzed to assess the winter and summer performance of the BIPV system using the IEC 61724 standard. The BIPV system generated 376.29 kWh in winter and 366.38 kWh in summer, with a total energy consumption of 209.50 kWh in winter and 236.65 kWh in summer. Solar irradiation during winter was 130.18 kWh/m2, while it was 210.24 kWh/m2 during summer. The average daily performance ratio (PR) was 44.01% in winter and 28.94% in summer. The observed decrease in PR during the summer month was attributed to the higher levels of solar irradiance experienced during this time, which outweighs the increased AC energy output. The low-performance ratio does not indicate technical issues but rather a mismatch between the load demand and PV generation. The results of this study highlight the need for a separate method to assess the performance of off-grid PV systems.
Read full abstract