Abstract
Distributed photovoltaic (PV) power generation systems are widely spread. Moreover, due to the randomness of meteorological conditions and the complexity of installation environments, it is difficult to eliminate the interference of factors such as meteorological fluctuations in the monitoring of abnormal states of PV equipment. Based on this, this paper proposes a PV power generation anomaly detection method based on Quantile Regression Recurrent Neural Network (QRRNN). First, the characteristics of solar irradiance on clear days are analyzed, and the clear day masking method is used to eliminate the interference of cloudy and rainy weather. Then, the output correlation of different power stations is analyzed to obtain PV stations with high output correlation as the horizontal reference, which is used to exclude interferences such as permanent faults at the power stations. At the same time, vertical comparison of the output curves of the station under test on different clear days is conducted to eliminate interference factors such as weather and environmental conditions. Subsequently, the metered active power output data, which is free from interference, is input into the QRRNN model to obtain the normal active power output range of the PV. The power threshold of the normal output range is utilized to identify anomalies in PV power generation. Finally, simulation analysis of actual PV system data is conducted, and the results show that the method can effectively identify PV power generation anomalies and has high accuracy in PV fault detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have