Herein, polyvinyl alcohol (PVA) acts as a host matrix for manganese-nickel ferrite (Mn0.4Ni0.6Fe2O4) nanoparticles (NPs). Oxalate precursors and a solution-cast method were used to produce a Mn0.4Ni0.6Fe2O4 spinel structure and PVA-Mn0.4Ni0.6Fe2O4 films, respectively. X-ray diffraction (XRD), scanning electron microscopy, optical microscopy (OM), a surface roughness tester, and FT-IR spectroscopy were used to identify the structure and morphology of the PVA-Mn0.4Ni0.6Fe2O4 films. XRD confirmed the formation of Mn0.4Ni0.6Fe2O4 spinel, and its additive into the PVA matrix causes an increase in the PVA amorphousity. The PVA-Mn0.4Ni0.6Fe2O4 film's transmission and absorption spectra were recorded with the help of a UV-visible spectrophotometer. The addition of 4%Mn0.4Ni0.6Fe2O4 to PVA resulted in a decrease in the optical bandgap from 5.53 eV to 4.83 eV. The Urbach energy increases from 0.46 eV for pure PVA to 2.14 eV for PVA-4%Mn0.4Ni0.6Fe2O4, indicating a rise in the defect density. In addition, the refractive index and extinction coefficient were calculated theoretically and were found to increase as the Mn0.4Ni0.6Fe2O4 content increases in the PVA matrix.