We present a Geographical Information System (GIS)-based framework implementing a Mamdani fuzzy rule-based system to partition in an unsupervised mode an urban system in urban green areas. The proposed framework is characterized by high usability and flexibility. The study area is partitioned into homogeneous regions regarding the characteristics of public green areas and relations with the residents and buildings. The urban system is initially partitioned into microzones, given the smallest areas in which a census of the urban system is taken in terms of resident population, type and number of buildings and properties, and industrial and service activities. During a pre-processing phase, the values of specific indicators defined by a domain expert, which characterize the type of urban green area and the relationship with the residents and buildings, are calculated for each microzone. Subsequently, the fuzzy rule-based system component is executed to classify each microzone based on the fuzzy rule set constructed by the domain expert. Spatially adjoining microzones belonging to the same class are dissolved to form homogeneous areas called urban green contexts. The membership degrees of the microzones to the fuzzy set of their class are used to evaluate the reliability of the classification of the urban green context. We test our framework on the municipality of Pozzuoli, Italy, comparing the results with the ones obtained in a supervised manner by the expert appropriately partitioning and classifying the urban study area based on his knowledge of it.