Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq. under Cd (CdCl2; 50μM/L) stress. The pepper plants were treated with Cd stress for 14 days, and the treatment was given directly into the hydroponic solution, while ZnONPs were applied as foliar spray two times a day (9 a.m. - 3 p.m.). The results revealed that Cd stress inhibited plant growth and biomass by impairing photosynthesis in photosystem function, gas exchange parameters, root activity, and morphology. In contrast, ZnONPs application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, SPAD index, gas exchange parameters and PSII maximum efficiency (Fv/Fm) and decreased Cd accumulation in leaf and root by 30% and 75%. Furthermore, ZnONPs efficiently restricted the hydrogen peroxide, superoxide ion (H2O2, O2•-). They restored cellular integrity (less MDA production) by triggering the antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), protein content, sugar level and proline content. Besides, ZnONPs treatment enhanced secondary metabolites (phenols and flavonoids) contents and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of ZnONPs in alleviating Cd-induced phytotoxicity in pepper plants by boosting biomass production, photosynthesis, secondary metabolism and reducing oxidative stress.
Read full abstract