Abstract
This research mainly focused on the leaf color change and photosystem function differentiation between Loropetalum chinense and its variety L. chinense var. rubrum under heat stress, which were tightly concerned about their ornamental traits and growth. L. chinense 'Xiangnong Xiangyun' (X) and L. chinense var. rubrum 'Xiangnong Fendai' (F) and L. chinense var. rubrum 'Hei Zhenzhu' (H) were chosen to be experimented on to investigate whether leaf color morphology and pigment composition could influence the adaptability of plants to high temperature in order to select foliage plants which posses stable leaf color and better adaptability for hot regions. The plants were cultured in hot environment (40 °C/33 °C, day/night) and normal environment (25 °C/18 °C, day/night). Phenotype and anatomic observation of three cultivars were made and leaf color indices and pigment contents were measured. During the experiment, H and F gradually turned green, total anthocyanins contents significantly decreased in them, however, chlorophyll b contents increased in all three cultivars. In addition, the initial fluorescence (Fo) decreased in X, while increased in H and F. For the maximum fluorescence (Fm) and maximum photochemical efficiency of PSII (Fv/Fm), they only increased in H and decreased in both F and X. The non-photochemical chlorophyll fluorescence quenching (NPQ) also increased in H and decreased in F. For X, it increased at first then gradually decreased. The coefficient of photochemical quenching all increased at first then gradually decreased. Correlation analysis between showed that there was relatively strong connection between anthocyanins, flavonoids and chlorophyll fluorescence parameters, especially NPQ, proved anthocyanins and flavonoids might not only involved in enriching leaf color, but also interfered with the protection of photosystem. Generally speaking, we found higher anthocyanin and flavonoids content level not only dramatically enriched the leaf color of L. chinense var. rubrum cultivars, but also offered more potential antioxidant to keep their normal growth when encountered heat stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.