The c-realcompact spaces are fully studied and most of the important and well-known properties of realcompact spaces are extended to these spaces. For a zero-dimensional space X, the space υ0X, which is the counterpart of υX, the Hewitt realcompactification of X, is introduced and studied. It is shown that υ0X, which is the smallest c-realcompact space between X and β0X, plays the same role (with respect to Cc(X)) as υX does in the context of C(X). It is proved for strongly zero-dimensional spaces, c-realcompact spaces, realcompact spaces and N-compact spaces coincide. In particular, if X is a strongly zero-dimensional space, then υX = υ0X. It is obsesrved that a zero-dimensional space X is pseudocompact if and only if Cc(X) = C*c(X), or equivalently if and only if υ0X = β0 X. In particular, a zero-dimensional pseudocompact space is compact if and only if it is c-realcompact. It is shown that Lindelöf spaces, subspaces of the one-point compactification (resp., Lindelöffication) of a discrete space with a nonmeasurable cardinal, are c-realcompact space. If X is a pseudocompact space, it is observed that C(X) = Cc(X) if and only if βX is scattered. Finally, the simplest possible proof (with reasoning) among the known proofs, of the well-known fact that discrete spaces of cardinality less than or equal to that of the continuum are realcompact, is given.
Read full abstract