Antimicrobial peptides (AMPs) play a crucial role in plant immune regulation, growth and development stages, which have attracted significant attentions in recent years. As the wet-lab experiments are laborious and cost-prohibitive, it is indispensable to develop computational methods to discover novel plant AMPs accurately. In this study, we presented a hierarchical evolutionary ensemble framework, named PAMPred, which consisted of a multi-level heterogeneous architecture to identify plant AMPs. Specifically, to address the existing class imbalance problem, a cluster-based resampling method was adopted to build multiple balanced subsets. Then, several peptide features including sequence information-based and physicochemical properties-based features were fed into the different types of basic learners to increase the ensemble diversity. For boosting the predictive capability of PAMPred, the improved particle swarm optimization (PSO) algorithm and dynamic ensemble pruning strategy were used to optimize the weights at different levels adaptively. Furthermore, extensive ten-fold cross-validation and independent testing experimental results demonstrated that PAMPred achieved excellent prediction performance and generalization ability, and outperformed the state-of-the-art methods. It also indicated that the proposed method could serve as an effective auxiliary tool to identify plant AMPs, which would be conducive to explore the immune regulatory mechanism of plants.
Read full abstract