Abstract

AbstractIn this paper, a visual simultaneous localization and mapping (VSLAM/visual SLAM) system called underwater visual SLAM (UVS) system is presented, specifically tailored for camera-only navigation in natural underwater environments. The UVS system is particularly optimized towards precision and robustness, as well as lifelong operations. We build upon Oriented features from accelerated segment test and Rotated Binary robust independent elementary features simultaneous localization and mapping (ORB-SLAM) and improve the accuracy by performing an exact search in the descriptor space during triangulation and the robustness by utilizing a unified initialization method and a motion model. In addition, we present a scale-agnostic station-keeping detection, which aims to optimize the map and poses during station-keeping, and a pruning strategy, which takes into account the point’s age and distance to the active keyframe. An exhaustive evaluation is presented to the reader, using a total of 38 in-air and underwater sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call