The integration of artificial intelligence (AI) systems for automating medical history taking and triage can significantly enhance patient flow in health care systems. Despite the promising performance of numerous AI studies, only a limited number of these systems have been successfully integrated into routine health care practice. To elucidate how AI systems can create value in this context, it is crucial to identify the current state of knowledge, including the readiness of these systems, the facilitators of and barriers to their implementation, and the perspectives of various stakeholders involved in their development and deployment. This study aims to map and summarize empirical research on AI systems designed for automating medical history taking and triage in health care settings. The study was conducted following the framework proposed by Arksey and O'Malley and adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. A comprehensive search of 5 databases-PubMed, CINAHL, PsycINFO, Scopus, and Web of Science-was performed. A detailed protocol was established before the review to ensure methodological rigor. A total of 1248 research publications were identified and screened. Of these, 86 (6.89%) met the eligibility criteria. Notably, most (n=63, 73%) studies were published between 2020 and 2022, with a significant concentration on emergency care (n=32, 37%). Other clinical contexts included radiology (n=12, 14%) and primary care (n=6, 7%). Many (n=15, 17%) studies did not specify a clinical context. Most (n=31, 36%) studies used retrospective designs, while others (n=34, 40%) did not specify their methodologies. The predominant type of AI system identified was the hybrid model (n=68, 79%), with forecasting (n=40, 47%) and recognition (n=36, 42%) being the most common tasks performed. While most (n=70, 81%) studies included patient populations, only 1 (1%) study investigated patients' views on AI-based medical history taking and triage, and 2 (2%) studies considered health care professionals' perspectives. Furthermore, only 6 (7%) studies validated or demonstrated AI systems in relevant clinical settings through real-time model testing, workflow implementation, clinical outcome evaluation, or integration into practice. Most (n=76, 88%) studies were concerned with the prototyping, development, or validation of AI systems. In total, 4 (5%) studies were reviews of several empirical studies conducted in different clinical settings. The facilitators and barriers to AI system implementation were categorized into 4 themes: technical aspects, contextual and cultural considerations, end-user engagement, and evaluation processes. This review highlights current trends, stakeholder perspectives, stages of innovation development, and key influencing factors related to implementing AI systems in health care. The identified literature gaps regarding stakeholder perspectives and the limited research on AI systems for automating medical history taking and triage indicate significant opportunities for further investigation and development in this evolving field.
Read full abstract