In recent years, technological advancements have made a promising impact on the development of autonomous vehicles. The evolution of electric vehicles, development of state-of-the-art sensors, and advances in artificial intelligence have provided necessary tools for the academia and industry to develop the prototypes of autonomous vehicles that enhance the road safety and traffic efficiency. The increase in the deployment of sensors for the autonomous vehicle, make it less cost-effective to be utilized by the consumer. This work focuses on the development of full-stack autonomous vehicle using the limited amount of sensors suite. The architecture aspect of the autonomous vehicle is categorized into four layers that include sensor layer, perception layer, planning layer and control layer. In the sensor layer, the integration of exteroceptive and proprioceptive sensors on the autonomous vehicle are presented. The perception of the environment in term localization and detection using exteroceptive sensors are included in the perception layer. In the planning layer, algorithms for mission and motion planning are illustrated by incorporating the route information, velocity replanning and obstacle avoidance. The control layer constitutes lateral and longitudinal control for the autonomous vehicle. For the verification of the proposed system, the autonomous vehicle is tested in an unconstrained environment. The experimentation results show the efficacy of each module, including localization, object detection, mission and motion planning, obstacle avoidance, velocity replanning, lateral and longitudinal control. Further, in order to demonstrate the experimental validation and the application aspect of the autonomous vehicle, the proposed system is tested as an autonomous taxi service.