In this work, a highly sensitive, selective, and industrially compatible gas sensor prototype is presented. The sensor utilizes three distributed-feedback quantum cascade lasers (DFB-QCLs), employing wavelength modulation spectroscopy (WMS) for the detection of hydrogen sulfide (H2S), methane (CH4), methyl mercaptan (CH3SH), and carbonyl sulfide (COS) in the spectral regions of 8.0 µm, 7.5 µm, and 4.9 µm, respectively. In addition, field-programmable gate array (FPGA) hardware is used for real-time signal generation, laser driving, signal processing, and handling industrial communication protocols. To comply with on-site safety standards, the QCL sensor prototype is housed in an industrial-grade enclosure and equipped with the necessary safety features to ensure certified operation under ATEX/IECEx regulations for hazardous and explosive environments. The system integrates an automated gas sampling and conditioning module, alongside a purge and pressurization system, with intrinsic safety electronic components, thereby enabling reliable explosion prevention and malfunction protection. Detection limits of approximately 0.3 ppmv for H2S, 60 ppbv for CH3SH, and 5 ppbv for COS are demonstrated. Noise-equivalent absorption sensitivity (NEAS) levels for H2S, CH3SH, and COS were determined to be 5.93 × 10−9, 4.65 × 10−9, and 5.24 × 10−10 cm−1 Hz−1/2. The suitability of the sensor prototype for simultaneous sulfur species monitoring is demonstrated in process streams of a hydrodesulphurization (HDS) and fluid catalytic cracking (FCC) unit at the project’s industrial partner, OMV AG.
Read full abstract