The electrochemical CO2 reduction reaction (CO2RR) is an attractive method for capturing intermittent renewable energy sources in chemical bonds, and converting waste CO2 into value-added products with a goal of carbon neutrality. Our group has focused on developing polymer-encapsulated molecular catalysts, specifically cobalt phthalocyanine (CoPc), as active and selective electrocatalysts for the CO2RR. When CoPc is adsorbed onto a carbon electrode and encapsulated in poly(4-vinylpyridine) (P4VP), its activity and reaction selectivity over the competitive hydrogen evolution reaction (HER) are enhanced by three synergistic effects: a primary axial coordination effect, a secondary reaction intermediate stabilization effect, and an outer-coordination proton transport effect. We have studied multiple aspects of this system using electrochemical, spectroscopic, and computational tools. Specifically, we have used X-ray absorption spectroscopy measurements to confirm that the pyridyl residues from the polymer are axially coordinated to the CoPc metal center, and we have shown that increasing the σ-donor ability of nitrogen-containing axial ligands results in increased activity for the CO2RR. Using proton inventory studies, we showed that proton delivery in the CoPc-P4VP system is controlled via a proton relay through the polymer matrix. Additionally, we studied the effect of catalyst, polymer, and graphite powder loading on CO2RR activity and determined best practices for incorporating carbon supports into catalyst-polymer composite films.In this Account, we describe these studies in detail, organizing our discussion by three types of microenvironmental interactions that affect the catalyst performance: ligand effects of the primary and secondary sphere, substrate transport of protons and CO2, and charge transport from the electrode surface to the catalyst sites. Our work demonstrates that careful electroanalytical study and interpretation can be valuable in developing a robust and comprehensive understanding of catalyst performance. In addition to our work with polymer encapsulated CoPc, we provide examples of similar surface-adsorbed molecular and solid-state systems that benefit from interactions between active catalytic sites and a polymer system. We also compare the activity results from our systems to other results in the CoPc literature, and other examples of molecular CO2RR catalysts on modified electrode surfaces. Finally, we speculate how the insights gained from studying CoPc could guide the field in designing other polymer-electrocatalyst systems. As CO2RR technologies become commercially viable and expand into the space of flow cells and gas-diffusion electrodes, we propose that overall device efficiency may benefit from understanding and promoting synergistic polymer-encapsulation effects in the microenvironment of these catalyst systems.