Abstract

Crystalline porous materials sustained by supramolecular interactions (e.g., π-π stacking interactions) are a type of molecular crystals showing considerable stability, but their applications are rarely reported due to the high difficulty of their construction. Herein, a stable π-π stacking framework formed by a trinuclear copper(I) compound [Cu3(HBtz)3(Btz)Cl2] (CuBtz, HBtz = benzotriazole) with pyrazolate-bridged dicopper(I) sites is reported and employed for electrochemical CO2 reduction, showing an impressive performance of 73.7 ± 2.8% Faradaic efficiency for C2+ products [i.e., ethylene (44%), ethanol (21%), acetate (4.7%), and propanol (4%)] with a current density of 7.9 mA cm-2 at the potential of -1.3 V versus RHE in an H-type cell and a Faradic efficiency (61.6%) of C2+ products with a current density of ≈1 A cm-2 and a reaction rate of 5639 μmol m-2 s-1 at the potential of -1.6 V versus RHE in a flow cell device, representing an impressive performance reported to date. In-situ infrared spectroscopy, density functional theory calculations, and control experiments revealed that the uncoordinated nitrogen atoms of benzotriazolates in the immediate vicinity can act as proton relays and cooperate with the dicopper(I) site to promote the hydrogenation process of the *CO intermediate and the C-C coupling, resulting in the highly selective electroreduction of CO2 to C2+ products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.