Water clusters play a prominent role in atmospheric and solution chemistry. Numerous arrangements of protons, H-bond configurations or networks, shape the cluster properties. Studies of small water clusters by cryogenic scanning tunneling microscopy and high-resolution rovibrational spectroscopy have established proton rearrangement mechanisms forming pathways between H-bond networks. The mechanisms, concerted tunneling in particular, describe the local processes connecting pairs of configurations. Here, proton rearrangement networks mapping these transformations are defined and explored to provide a global view of the H-bond configurations in clusters. The networks are constructed for clusters of different sizes and structures. Their analysis reveals an odd-even effect with respect to the number of water molecules, exponential growth of the small-world character, bimodality of the degree distributions, and gapped assortativity of the networks. The last two properties signify the unexpected division of H-bond configurations into two classes according to their network connectivity. The results demonstrate qualitative differences between proton rearrangement mechanisms, suggest a strong influence of the cluster structure. The generated networks are of interest as real-world models for network rewiring; they establish an alternative platform for studies of proton rearrangements in H-bonded systems.