Efficient and precise chemical protein modification methods are highly sought after in biotechnology. However, chemically distinguishing a single site within a large protein is challenging. This study introduces a Copper Assisted Sequence-specific Conjugation Tag (CAST) method, enabling rapid (second order rate 8.1M-1s-1) and site-specific chemical modification of the protein backbone with pinpoint accuracy. The versatility of this method is demonstrated through the preparation of antibody-drug conjugates, showcasing high plasma stability and potent efficacy in both in vitro and in vivo settings. Thus, CAST emerges as an efficient and quantitative approach for attaching payloads to large, native proteins.