Abstract
Strategies for covalent modification of RNA are important for enabling biological studies of the biopolymer and for enhancing properties of therapeutic RNAs. While a number of electrophiles have been observed to react with RNA, few methods exist for reaction with nucleophiles. Here, we describe new reagents that enable efficient conjugation of amines and other nucleophiles to unmodified RNA postsynthetically via transient activation of 2'-OH groups. Reaction of single-stranded RNA in aqueous solution with phenolic imidazolecarbamates at room temperature results in stoichiometric and superstoichiometric yields of imidazolecarbonyl group adducts, and control experiments with DNA confirm the site of reaction in RNA as 2'-OH. Subsequent incubation of imidazolecarbonyl-activated RNAs with primary or selected secondary amines results in rapid, high-yield conversion to carbamate conjugates. The activation and subsequent nucleophile reaction can be carried out either stepwise or in a one-pot reaction. Thiols and phenol species react to yield (thio)carbonate adducts, and amino acid sidechains also react, suggesting possible future utility for protein conjugates and analysis of protein-RNA interactions. The activation method is found to be selective to unpaired regions of RNA, and can be directed to a specific location in a strand by use of a loop-inducing helper DNA. The results establish novel and efficient reagents and methods for modifying RNA postsynthetically with nucleophiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.