Our limb prostheses aim to restore Activities of Daily Living (ADLs) for amputees, with the socket being a critical component of trans-tibial prostheses influencing both comfort and functionality. Despite technological advancements, challenges such as fit, weight, and durability remain. This study investigates an additive manufacturing method for Total Surface Bearing (TSB) sockets, leveraging CT scans to create a Computer-Aided Design (CAD) and finite element (FE) model. Biomechanical behavior under static loading conditions were analyzed using FE analysis and resistive-based pressure sensors. The study found consistent pressure distribution across the residual limb, with deviations of 8.53 kPa and 4.46 kPa between FE analysis and experimental measurements. Mean pressures of 44.6 kPa and 22.11 kPa were observed under Full Body Weight (FBW) and Half Body Weight (HBW) conditions, respectively. The FE analysis demonstrated a uniform stress distribution in the prosthetic socket, with a maximum stress of 0.15 MPa and a deformation of 0.008 mm, highlighting the effectiveness of this approach in enhancing socket design.
Read full abstract