BackgroundWater bodies are affected by chemical contamination, including micropollutants, which is not fully captured by conventional chemical monitoring methods. The inclusion of integrative, effect-based in vivo and in vitro methods in standardized assessment procedures offers the possibility of bridging discrepancies between chemical and biological assessments and has already been proposed in several studies. However, there is a need to develop a comparable ecotoxicological assessment system for surface waters as for chemical and ecological status. This study aims to contribute to this discourse by investigating the temporal and spatial variation of ecotoxicological effects by assessing water grab samples of 15 different sites in central Germany over the course of 1 year using different in vitro assays.ResultsThe level of measured estrogenicity and anti-estrogenicity varied between the four measurement campaigns, while baseline toxicity, dioxin-like effects and mutagenicity showed relatively constant detectable effects over the study period. The impact of conventionally treated wastewater appeared to be one of the strongest influencing stressors, as direct comparisons of ecotoxicity upstream and downstream of wastewater treatment plant dischargers showed a significant increase for most of the conducted bioassays. Comparison of the measured estrogenicity with proposed threshold values showed effects within ecotoxicologically relevant ranges.ConclusionsBioassays record ecotoxicological effects on the basis of specific modes of action, allowing whole groups of substances to be identified as pollutants. Recording ecotoxicological status in this way is a useful complement to water assessment tools and can contribute to successful water management. Although most of the assays in this study were very consistent in detecting strong anthropogenic influences, possible temporal variations of individual assays should be taken into account when planning sampling strategies to improve the comparability of results.