The modified Poisson regression coupled with a robust sandwich variance has become a viable alternative to log-binomial regression for estimating the marginal relative risk in cluster randomized trials. However, a corresponding sample size formula for relative risk regression via the modified Poisson model is currently not available for cluster randomized trials. Through analytical derivations, we show that there is no loss of asymptotic efficiency for estimating the marginal relative risk via the modified Poisson regression relative to the log-binomial regression. This finding holds both under the independence working correlation and under the exchangeable working correlation provided a simple modification is used to obtain the consistent intraclass correlation coefficient estimate. Therefore, the sample size formulas developed for log-binomial regression naturally apply to the modified Poisson regression in cluster randomized trials. We further extend the sample size formulas to accommodate variable cluster sizes. An extensive Monte Carlo simulation study is carried out to validate the proposed formulas. We find that the proposed formulas have satisfactory performance across a range of cluster size variability, as long as suitable finite-sample corrections are applied to the sandwich variance estimator and the number of clusters is at least 10. Our findings also suggest that the sample size estimate under the exchangeable working correlation is more robust to cluster size variability, and recommend the use of an exchangeable working correlation over an independence working correlation for both design and analysis. The proposed sample size formulas are illustrated using the Stop Colorectal Cancer (STOP CRC) trial.