Abstract
The 2 × 2 crossover trial uses subjects as their own control to reduce the intersubject variability in the treatment comparison, and typically requires fewer subjects than a parallel design. The generalized estimating equations (GEE) methodology has been commonly used to analyze incomplete discrete outcomes from crossover trials. We propose a unified approach to the power and sample size determination for the Wald Z-test and t-test from GEE analysis of paired binary, ordinal and count outcomes in crossover trials. The proposed method allows misspecification of the variance and correlation of the outcomes, missing outcomes, and adjustment for the period effect. We demonstrate that misspecification of the working variance and correlation functions leads to no or minimal efficiency loss in GEE analysis of paired outcomes. In general, GEE requires the assumption of missing completely at random. For bivariate binary outcomes, we show by simulation that the GEE estimate is asymptotically unbiased or only minimally biased, and the proposed sample size method is suitable under missing at random (MAR) if the working correlation is correctly specified. The performance of the proposed method is illustrated with several numerical examples. Adaption of the method to other paired outcomes is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.