The high prevalence of conditions leading to foot drop highlights the need for devices that restore functionality, enabling patients to regain a natural gait pattern. There is a demand for a portable, lightweight, low-cost, and efficient active ankle-foot orthosis. In this work, we present the prototype of a new design that was simulated in a previous contribution, with a test bench evaluation of the low-level control. The dynamical behavior of a cam suspension interaction with a proportional–integral–derivative controller system for transmission is evaluated. The proposed active orthosis includes a novel cam-based actuator, designed to intervene at the dorsiflexion stage of gait, without influencing the plantar flexion. This design is aimed at specific lower limb ailments that cause a need for assistance only in raising the foot, and it leverages a commercial servomotor to achieve ankle angle tracking. System identification was performed using a test bench, with three degrees of freedom to emulate tibial motion during gait. Response evaluations of the device showed low values for the integral time squared error, peak overshoot, and settling time for step inputs, with and without additional periodic perturbations. The root mean squared error of the device while tracking an ankle angle signal varied from 0.1 to 6.5 degrees, depending on the speed of the changes.
Read full abstract